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INTRODUCTION 

In a parallel plate compact heat exchanger made of a polymer 
the heat resistance of the plate is important of the per- 
formance for the heat exchanger [1, 2]. This is because the 
heat conduction coefficient is relatively low, a typical value 
of 0.19 W m -1 K -~ for PolyVinylDiFluoride. The overall 
heat transfer generally depends on the shape of the polymer 
slab. Many studies were devoted to the quantification of the 
effect of the shape. Langmuir [3], Kutateladze [4], Sun- 
derland and Johnsor. [5], Lewis [6] and Hahne and Grigull 
[7] introduced shape factors to take this dependency in 
account. In this paper conduction of heat in the flow direction 
of the coolant is assumed to be negligible. Hahne and Grigull 
[7] summarize expressions for the shape factors of many 
two-dimensional (2D) geometries. However, only few shape 
factors seem to exist for a slab cooled from two sides con- 
taining multiple char,nels in a row. A typical cross-section of 
the geometry with nmltiple coolant channels as studied in 
this paper is schematJzed in Fig. 1. Here d~ denotes the length 
of the coolant channel in the direction of the gas flow and d2 
the length perpendicalar to the gas flow direction. The cool- 
ant channels are centred at a distance s from each other and 
the distance between each centre and the gas surface is h. 
The edges of the inner channels are not acute but slightly 
curved. Typical values ofd~, d2 and h are 1.37, 1.47 and 1.00 
mm, respectively [1]. 

In dropwise condensation a part of the surface of the 
condenser plate is dry and the remaining part is wetted. The 
overall heat transfer ratio can be measured but the heat 
resistance of the slab has to be computed. Van der Geld 
and Brouwers [2] use the relation of Kutateladze [4] for 
cylindrical channels, see equation (5), with nR replaced by 
the half of the perir~eter of one coolant channel, (dr + d2)/2. 
In this paper it is investigated if the relation is valid for all 
radii and how the shape factor depends on d~ and d2. It is 
shown that for actual sizes of the PVDF heat exchanger 
plate the shape factor computed with Kutateladzes relation 
exceeds the actual shape factor by about 10%. 

t Author to whom correspondence should be addressed. 
~:The heat resistance of the slab is now given by 

R* = h/(2"AI'F) = 1/(2.S) with A] = L" W, L and Wthe 
lengths of the plate in the direction of the coolant and gas, 
respectively. The total heat resistance Rto t is 
1/(1/R~ + 1/Ro + 1/If*) with RI and R0 the heat resistances 
by convection towards surfaces A~ and Ao, respectively, i.e. 
RI = l/(Al"hco,O with h .... denoting the convective heat 
transfer coefficient, Q = (TI - To)/Rtot. 

With dropwise condensation, the plate is partly wetted 
and the temperature at the gas side wall is not uniform since 
the condensation enthalpy is mainly released at the feet of the 
condensing drops. A typical wetted area fraction in dropwise 
condensation for air-stream mixtures is 36% [1]. This non- 
uniformity of the gas-sided temperature might affect the 
shape factor and hence the heat resistance of the condenser 
plate. This effect is therefore investigated in this paper. 

THEORY 

In the two-dimensional geometry of Fig. 1 the heat flux q, 
in W m -2, is given by [8] 

2 f/" 0T 
q=O/A1 =~, JJA S~n dA, (1) 

if the heat flux is steady and the heat conduction coefficient 
2 is independent of the temperature. Here a 1 is the outward 
normal of surface A 1. The shape factors,, S and F, are defined 
as : 

fl, S =  ~nl d A l / ( T i -  To) 

h ( (  OTdA,/(TI_To ) (2) and F = ~ ( j j  A On 

and yields Q = 2" S.(T1 - To) and q = )~. F'(TI -- To)/h with 
T~ the average temperature of the PVDF plate at the gas side 
and To that of the coolant side (see Fig. 2). S represents the 
shape factor of Langrnuir [3] as used by many others, e.g. 
Hahne and Grigull [7]. However, the factor F, apart from 
being dimensionless, has the following advantages : 

(1) For a piece of slab that is not shaped in a special manner, 
i.e. which is flat, Fhas the value 1. 

(2) It has the straightforward interpretation of the ratio 
h/ff with h defined in Fig. 1 and/7 a 'conductive' mean 
thickness. 

S is used throughout this paper for ease of reference. Values 
of F will be indicated at some places. 

The Laplace equation for conduction with the present 
assumptions reads 

020 020 
- -  + = 0 (3) 
0x 2 ay 2 
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NOMENCLATURE 

surface [m 2] r 
coefficients S 
length coolant channel in direction of  the s 
gas flow [m] 
length coolant channel perpendicular to the T 
gas flow direction [m] W 
shape factor 
distance between gas side surface and centre x 
coolant channel [m] x* 
heat transfer coefficient [W m -2 K -  1] y 
length of  the heat exchanger plate in coolant 
direction [m] 
heat flow rate [W] 
heat flux [W m -2] 
radius [m] 
heat resistance [K W - ~] 

effective radius, d~ 1 -~)- d~ [m] 
shape factor [m] 
distance between two successive channels 
[m] 
temperature [K] 
length of  heat exchanger plate in gas flow 
direction [m] 
coordinate in gas flow direction [m] 
x-coordinate where the step occurs [m] 
coordinate perpendicular to the gas flow 
direction [m]. 

Greek symbols 
2 thermal conductivity [W m -  i K - 1] 

O dimensionless temperature 
(T - -  To)/(T, -- To). 

g ~ Q  unit cell /AI 
n ................. ~ ...... 

/ h i W id= 

0 S coolant 
Fig. 1. Schematic of  cross-section of  finite slab with coolant channels. 

,k 

or o a-T=° 

I ' Q r = T~ ~ ~ axis of symmetry 

Fig. 2. Boundary conditions of a single cell of Fig. 1 with isothermals schematized. 
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with dimensionless teraperature 0 = ( T -  To) / ( T~ - To). The 
heat flux and the shape factor have been found by numeri-  
cally solving the differential equation (3) for constant  tem- 
peratures T1 and To at the gas and coolant side, respectively.:~ 
Discretisation using the Crank-Nicholson  method yields 

~2~]  = Ore+ ,,n ~_ On,_ l,n __ 2Ore, n 

aX z Im,n (Ax) x 

and ~2® = ®m,.+l+Om-l,~--2Om,,  

ay 2 m,~ (Ay) 2 

The central node Om,~ of  each Crank Nicholson cell [8, 9] is 
estimated according to 

1 2 (Om+t.  +Om_l  .~ 
Orn n : ~ (Ay) f - "- 

1 2 (Om n+l -~-Omn 1 k 
+ ~ ( A x )  / " ............... -/ (4) 

\ (Ax)2+(ay)  2 ) 

for step sizes Ax and Ay in x and y direction, respectively. 
Because o f  symmetry only one cell of  Fig. I has to be 

computed.  The temperatures at A~ and A0 are known (see 
Figs. 1 and 2) and the gradients dT/~3n = n" VT at the other 
boundaries are zero. All temperatures except that of  the 
boundaries are set to zero as a first guess. New temperatures 
at the nodes are now calculated with equation (4). The pro- 
cess is reiterated until a steady state has been achieved. Con- 
vergence is said to be reached if the relative difference 
between successive calculated values, (TJ,m - T~,d)/T~,m, is 
less than 10 -5. For  small d~ (dj < 3.6 × 10 4 m) the number  
of  iterations necessary is about  200 and for larger d~ this is 
about  750. The distance between the nodes of adjacent cells 
is 4 x 10 -5 m in both x and y directions. Increasing the 
number  of  nodes did not  affect the value of  F. 

Alternatively, temperatures are computed for the same 
boundary conditions with the aid of  the finite element pack- 
age F IDAP TM, version 7.52. 

CYLINDRICAL CHANNELS 

For a row of  cylirdrical channels in a semi-infinite slab, 
as shown in Fig. 1, Kutateladze [4] gives the shape factor 

Scyl=(At~'x/ln(3sinh(n~hs))\s) (5) 

with R the radius of  the cylinder, s the distance between two 
successive cylinders, h the distance between the centre of  the 
cylinder and the surface and A ~ = 2" s" L, L being the length 
of  the plate in the direction of the coolant. By selecting A~ in 
this way, Qeyl = 2" S '(Tj - To) obviously is the heat  flow rate 
to both sides of  a piece of slab with length s: thus, Q" = 7Qcyt'~ " 
In Fig. 3 the dashed line represents relation (5). For  six radii 
the shape factor has  been computed with the finite element 
package F IDAP TM for s = 2 m m  as indicated by FEM in 
Fig. 3. For small ractii there is fair agreement but  for larger 
radii Kutateladze 's  relation yields too high values for S~y~, 
see Fig. 3. So equation (5) only holds for R/s < 0.30• 

To get a shape factor for the range [0.30 ; 0.44] of  R/s the 
relation (5) is adapted. In the numerator  a constant  a0 is 
added and in the denominator  a constant  aj : 

S~y,=(A:)'aon/ln(al~sinh(~-hs) ). (6) 

t Conformal  mapping [4, 10] is another  method to deter- 
mine the shape factor. However, the geometry of  Fig. 1 is 
too complex to estimate the shape factor of  this geometry by 
conformal mapping.  

The fitted coefficients are a0 = 0.76_+ 0.08 and 
a~ = 1.26_+0.05. These values are given with a 95% con- 
fidence interval [11]. 

RECTANGULAR CHANNELS 

To obtain an expression for the shape factor for the bundle 
of  rounded rectangular channels of  Fig. 1 the Kutateladze 's  
relation is adapted once more. As opposed to equation (6), 
the radius R is replaced by an effective radius r = d~ ~ -°)" d~. 
This yields 

S=(~)'aorc/ln(a~sinh(n~-hs) ) 

Note that AUs = 2"L, as before. 

(7) 

The shape factor has been computed both with the differ- 
ence scheme (see Fig. 4) described above and with the finite 
element package F IDAP TM, using the grids depicted in Fig. 
4. The results of  the Crank-Nicholson method and the FID- 
AP TM runs agree within 0.5%. The coefficients of  equation 
(7) have been fitted to the computat ional  results given in 
Fig. 5, yielding a0=0.67-+0.02,  a~ =0.728_+0.006 and 
a = 0.86 4- 0.02 for uniform temperatures at the boundary.  

The value 0.86 for a can be compared with the cor- 
responding value 0.75 for a single rectangular cell in an 
infinite slab. In this case the shape factor is given by [4] 

\ d  °'25" d °75) (8) 

in which h, d, and dE have the same meaning as in equation 
(7) and Fig. 1. The effective radius, r, is dominated by d2 
since when the wall thickness, (h - dE), goes to zero the heat 
resistance goes to that  of  a thin plate, Rp~ = (h -d2)/2. 

The shape factor for channels with the geometry of Fig. 1 
is about  5% smaller than  that of  exactly rectangular chan- 
nels. In this case computat ions  with finite difference scheme 
and with F IDAP TM have yielded a0 = 0.70_+ 0.02, 
al = 0.730 _+ 0.005 and a = 0.88 + 0.02, to be used in equation 
(7). 

In practical applications the slab is cooled by water flowing 
through the channels and heated by gas condensing at the 
gas-sided surface Ab see the introduction and [2]. Under-  
neath condensing drops the plate temperature is higher then 
elsewhere [2]. To simulate this, the temperature is given a 
Heaviside step function of  distance x, see Fig. 2. The step 
occurs at x = x*, i.e. in [0; x*/s], the temperature is taken 
to be 1.05-T~ and in (x*/s; 1] it is T~. The average wall 

30 shape factor for cylindrical channels 
with radius R at distance s 

6 
• computed with FEM 

20 

0,76(nA,/s)/ln((s/l,26nR)sinh(~h/s) ~1 / 4 
~ /  .. , .... ~ 

0 I I I I 

0,00 0,10 0,20 0,30 0,40 0,50 

R/s [-1 
Fig. 3. Computa t ions  of  the shape factor for a row of cyl- 

indrical channels in an infinite slab. 
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Fig. 4. Nodes used to model the rounded comer in the difference method and finite element method. 
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shape factor of rounded rectangular 
channels with effective radius r 

• computed with diffemnco scheme ~ 
/ 

~ computed with FEM 

O,6 7 ( ~A,/s)/In( (s/ l ,26nr)sinh( r , h / s ~  
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Fig. 5. Shape factor of the rounded rectangular channels of  the geometry of  Fig. 1. 
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temperature is T~ =(l+O.05"x*/s)'T~ and replaces T~ in 
equation (2) and related equations. The resulting shape fac- 
tor is named Sx,/s. With uniform temperature, it is given by 
So = S0/s. Computations are performed with FIDAP T M  for 
10 different x*/s values. The number of  nodes in the grid is 
2038 and each element has four nodes (quadrilateral 
elements). Further refining the grid changed the outcome by 
0,1%o, typically. Figure 6 summarizes the results for 
DEV = IO0%'(S~./~-So)/So. At places where ~ < T~, the 
dimensionless temperature (9 exceeds 1. The non-uniformity 
of the temperature does not significantly affect the shape 
factor and the heat resistance of  the condenser plate. For 
wetted area fractions of  about 36% that are typical in drop- 
wise condensation of  air-steam mixtures [ 1] the deviation of  
the shape factor is about 0.3%. In Fig. 7 the computed 
isotherms are plotted for the case x*/s = 0.35. 

CONCLUSIONS 

For the geometry of  Fig. 1 the shape factor S, defined by 
equation (2), is given by equation (7) with a0 = 0.67+0.02, 
a~ = 0.728 ___ 0.006 and a = 0 . 8 6 + 0 . 0 2 .  It holds for 
0.60 ~< r/s <~ 0.83, with r the effective radius given by d °'j4" 
d °'86. For exactly rectangular channels equation (7) can also 
be used, with coefficients a0 = 0.70 -I- 0.02, a~ = 0.730-t- 0.005 
and a = 0.88+0.02. It holds for r/s < 0.85. The shape factor 
of  Kutateladze (5) for cylindrical channels is only valid for 
radii smaller than 30% of  s. For larger radii the modified 
relation (6) can be used with a0=0.76-t-0.08 and 
al = 1.26_+0.05. 

If  the gas-sided wall temperature is not uniform but follows 
a prescribed step function, the shape factor differs only by 
0.3% if the average wall temperature is used. 
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Fig. 6. Percentage of relative increase in shape factor of rounded rectangular channels 
if in [0 ; x*/s] the temperature at the gas-sided surface is increased to 1.05- T,. 
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Fig. 7. Computation of isothermals for x*/s = 0.35 with FIDAP TM. 
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Throughout this paper the classical definition of the shape 
factor, S, has been ased. However, the authors believe that 
the shape factor F as defined in equation (2) is more useful 
for reasons given below equation (2). 
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